Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 579(7800): 586-591, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214246

RESUMO

Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods1, and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease2-4. Fructose intake triggers de novo lipogenesis in the liver4-6, in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates7. Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases8. However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota9, and this supplies lipogenic acetyl-CoA independently of ACLY10. Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.


Assuntos
Acetatos/metabolismo , Açúcares da Dieta/metabolismo , Frutose/metabolismo , Microbioma Gastrointestinal/fisiologia , Lipogênese , Fígado/metabolismo , ATP Citrato (pro-S)-Liase/deficiência , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Acetato-CoA Ligase/deficiência , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Acetilcoenzima A/metabolismo , Animais , Ácido Cítrico/metabolismo , Açúcares da Dieta/administração & dosagem , Açúcares da Dieta/farmacologia , Ácidos Graxos/metabolismo , Frutose/administração & dosagem , Frutose/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Marcação por Isótopo , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Camundongos , Especificidade por Substrato
2.
Alcohol Clin Exp Res ; 43(9): 1859-1871, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31283017

RESUMO

BACKGROUND: Ethanol (EtOH) is a teratogen that causes severe birth defects, but the mechanisms by which EtOH affects stem cell differentiation are unclear. Our goal here is to examine the effects of EtOH and its metabolites, acetaldehyde (AcH) and acetate, on embryonic stem cell (ESC) differentiation. METHODS: We designed ESC lines in which aldehyde dehydrogenase (ALDH2, NCBI#11669) and acyl-CoA synthetase short-chain family member 2 (ACSS2, NCBI#60525) were knocked out by CRISPR-Cas9 technology. We selected these genes because of their key roles in EtOH oxidation in order to dissect the effects of EtOH metabolism on differentiation. RESULTS: By using kinetic assays, we confirmed that AcH is primarily oxidized by ALDH2 rather than ALDH1A2. We found increases in mRNAs of differentiation-associated genes (Hoxa1, Cyp26a1, and RARß2) upon EtOH treatment of WT and Acss2-/- ESCs, but not Aldh2-/- ESCs. The absence of ALDH2 reduced mRNAs of some pluripotency factors (Nanog, Sox2, and Klf4). Treatment of WT ESCs with AcH or 4-hydroxynonenal (4-HNE), another substrate of ALDH2, increased differentiation-associated transcripts compared to levels in untreated cells. mRNAs of genes involved in retinoic acid (RA) synthesis (Stra6 and Rdh10) were also increased by EtOH, AcH, and 4-HNE treatment. Retinoic acid receptor-γ (RARγ) is required for both EtOH- and AcH-mediated increases in Hoxa1 and Stra6, demonstrating the critical role of RA:RARγ signaling in AcH-induced ESC differentiation. CONCLUSIONS: ACSS2 knockouts showed no changes in differentiation phenotype, while pluripotency-related transcripts were decreased in ALDH2 knockout ESCs. We demonstrate that AcH increases differentiation-associated mRNAs in ESCs via RARγ.


Assuntos
Acetaldeído/efeitos adversos , Aldeído-Desidrogenase Mitocondrial/deficiência , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Etanol/efeitos adversos , Acetato-CoA Ligase/deficiência , Acetato-CoA Ligase/genética , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Etanol/metabolismo , Técnicas de Inativação de Genes , Fator 4 Semelhante a Kruppel , Camundongos , Receptores do Ácido Retinoico/metabolismo , Receptor gama de Ácido Retinoico
3.
Nature ; 546(7658): 381-386, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28562591

RESUMO

Metabolic production of acetyl coenzyme A (acetyl-CoA) is linked to histone acetylation and gene regulation, but the precise mechanisms of this process are largely unknown. Here we show that the metabolic enzyme acetyl-CoA synthetase 2 (ACSS2) directly regulates histone acetylation in neurons and spatial memory in mammals. In a neuronal cell culture model, ACSS2 increases in the nuclei of differentiating neurons and localizes to upregulated neuronal genes near sites of elevated histone acetylation. A decrease in ACSS2 lowers nuclear acetyl-CoA levels, histone acetylation, and responsive expression of the cohort of neuronal genes. In adult mice, attenuation of hippocampal ACSS2 expression impairs long-term spatial memory, a cognitive process that relies on histone acetylation. A decrease in ACSS2 in the hippocampus also leads to defective upregulation of memory-related neuronal genes that are pre-bound by ACSS2. These results reveal a connection between cellular metabolism, gene regulation, and neural plasticity and establish a link between acetyl-CoA generation 'on-site' at chromatin for histone acetylation and the transcription of key neuronal genes.


Assuntos
Acetato-CoA Ligase/metabolismo , Hipocampo/enzimologia , Hipocampo/fisiologia , Histonas/metabolismo , Memória/fisiologia , Plasticidade Neuronal/genética , Ativação Transcricional , Acetato-CoA Ligase/deficiência , Acetato-CoA Ligase/genética , Acetilcoenzima A/metabolismo , Acetilação , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/enzimologia , Cromatina/genética , Cromatina/metabolismo , Regulação Enzimológica da Expressão Gênica , Hipocampo/metabolismo , Histonas/química , Consolidação da Memória/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Regulação para Cima
4.
Biol Chem ; 391(10): 1139-47, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20707605

RESUMO

We have previously shown that both the hypoxia-inducible transcription factor ArcA and the PoxB/Acs bypass of the pyruvate dehydrogenase complex contribute to extended lifespan in Escherichia coli. In agreement with studies in higher eukaryotes, we also demonstrated that long-lived E. coli mutants, including LipA-deficient cells, are stress resistant. Here, we show that ArcA contributes to the enhanced lifespan and heat shock resistance of the lipA mutant by suppressing expression of the acetyl-CoA synthetase (acs) gene. The deletion of acs reversed the reduced lifespan of the lipA arcA mutant and promoted the accumulation of extracellular acetate, indicating that inhibition of carbon source uptake contributes to survival extension. However, Acs also sensitized cells lacking ArcA to heat shock, in the absence of extracellular acetate. These results provide evidence for the role of Acs in regulating lifespan and/or stress resistance by both carbon source uptake-dependent and -independent mechanisms.


Assuntos
Acetato-CoA Ligase/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/fisiologia , Mutação , Proteínas Repressoras/metabolismo , Sulfurtransferases/genética , Acetato-CoA Ligase/deficiência , Acetato-CoA Ligase/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Resposta ao Choque Térmico/genética , Longevidade/genética , Oxigênio/metabolismo , Proteínas Repressoras/genética
5.
Microbiology (Reading) ; 144 ( Pt 7): 1895-1900, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9695922

RESUMO

Acetate-non-utilizing mutants in Aspergillus niger were selected by resistance to 1.2% propionate in the presence of 0.1% glucose. Mutants showing normal morphology fell into two complementation groups. One class of mutant lacked acetyl-CoA synthetase but had high levels of isocitrate lyase, while the second class showed reduced levels of both acetyl-CoA synthetase and isocitrate lyase compared to the wild-type strain. By analogy with mutants selected by resistance to 1.2% propionate in Aspergillus nidulans, the properties of the mutants in A. niger suggest that the mutations are either in the structural gene for acetyl-CoA synthetase (acuA) or in a possible regulatory gene of acetate induction (acuB). A third class of mutant in a different complementation group was obtained which had abnormal morphology (yellow mycelium and few conidia); the specific lesion in these mutants has not been determined.


Assuntos
Acetato-CoA Ligase/deficiência , Aspergillus niger/enzimologia , Aspergillus niger/genética , Mutação , Acetato-CoA Ligase/genética , Aspergillus niger/citologia , Clonagem Molecular , Resistência Microbiana a Medicamentos , Genes Fúngicos , Genes Reguladores , Isocitrato Liase/metabolismo , Propionatos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...